Efficient Implicit Unsupervised Text Hashing
using Adversarial Autoencoder

Khoa D. Doan

Dept. of Computer Science
Virginia Tech, Arlington, VA
khoadoan@vt.edu

ABSTRACT

Searching for documents with semantically similar content is a
fundamental problem in the information retrieval domain with
various challenges, primarily, in terms of efficiency and effective-
ness. Despite the promise of modeling structured dependencies in
documents, several existing text hashing methods lack an efficient
mechanism to incorporate such vital information. Additionally, the
desired characteristics of an ideal hash function, such as robust-
ness to noise, low quantization error and bit balance/uncorrelation,
are not effectively learned with existing methods. This is because
of the requirement to either tune additional hyper-parameters or
optimize these heuristically and explicitly constructed cost func-
tions. In this paper, we propose a Denoising Adversarial Binary
Autoencoder (DABA) model which presents a novel representation
learning framework that captures structured representation of text
documents in the learned hash function. Also, adversarial training
provides an alternative direction to implicitly learn a hash function
that captures all the desired characteristics of an ideal hash function.
Essentially, DABA adopts a novel single-optimization adversarial
training procedure that minimizes the Wasserstein distance in its
primal domain to regularize the encoder’s output of either a recur-
rent neural network or a convolutional autoencoder. We empirically
demonstrate the effectiveness of our proposed method in captur-
ing the intrinsic semantic manifold of the related documents. The
proposed method outperforms the current state-of-the-art shallow
and deep unsupervised hashing methods for the document retrieval
task on several prominent document collections.

CCS CONCEPTS

» Information systems — Information retrieval; Document
representation; Content analysis and feature selection; « Theory of
computation — Adversarial learning; - Computing method-
ologies — Neural networks; Unsupervised learning.

KEYWORDS

Hashing, autoencoder, adversarial training, deep learning.
ACM Reference Format:

Khoa D. Doan and Chandan K. Reddy. 2020. Efficient Implicit Unsupervised
Text Hashing using Adversarial Autoencoder. In Proceedings of The Web

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.

WWW °20, April 20-24, 2020, Taipei, Taiwan

© 2020 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.

ACM ISBN 978-1-4503-7023-3/20/04.

https://doi.org/10.1145/3366423.3380150

Chandan K. Reddy

Dept. of Computer Science
Virginia Tech, Arlington, VA
reddy@cs.vt.edu

Conference 2020 (WWW °20), April 2024, 2020, Taipei, Taiwan. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3366423.3380150

1 INTRODUCTION

One of the crucial challenges associated with mining massive text
corpora is to efficiently and effectively search for documents with
similar semantic content, a problem known as “semantic similarity
search” in the information retrieval domain. Exact similarity search,
which aims to exhaustively find all the relevant documents, is often
impractical due to its computational complexity. Specifically, it re-
quires an inefficient linear scan of all documents in the database. The
number of documents in the database range in the order of millions
(or sometimes even billions). Thus, approximate similarity search
algorithms that efficiently examine a smaller subset of candidate
documents provide a principled approach for solving this problem.
For instance, in hashing, a classic approximate-similarity search
approach, we project the original input in the high-dimensional
space onto a much smaller locality-preserving binary space. There-
fore, the full-linear scan is no longer imperative. Compact binary
codes are storage-efficient and the search-cost in the original high-
dimensional space is reduced to calculating Hamming distances.
The binary representation of a document often requires 4 to 8 bytes
of storage and computing the pairwise Hamming distance using
“bitwise” XOR needs a single CPU instruction.

While hashing methods ensure efficiency, an important challenge
is to learn a hash function that effectively captures the semantic
similarity between a pair of text documents, especially, in the pres-
ence of noisy data. Historically, supervised hashing techniques
display a better retrieval performance, but they require human-
annotated documents that are expensive to obtain on massive-scale
datasets [5, 9, 22, 36]. Unsupervised hashing methods do not re-
quire supervised signals for training, thus are more suitable for
massive-scale corpora [5, 10, 14, 26, 29, 37, 38].

For analyzing text data, majority of the existing unsupervised
hashing methods employ shallow, linear hash functions. On the
other hand, deep models are capable of learning non-linear hash
functions [5, 26, 29, 38]. However, despite the improved perfor-
mance, they heavily rely on manually-engineered feature vectors
such as Term Frequency-Inverse Document Frequency (TF-IDF) [27].
To the best of our knowledge, no prior work in the literature at-
tempts to learn hash functions that capture the semantic and syn-
tactic representation of raw text documents. Although, respectable
performance is observed in the context of other text mining prob-
lems [20, 25, 39, 40].

In addition to capturing optimal representation of the documents
in the hash functions, the learned hash codes should also achieve bit
balance/uncorrelation and low-quantization error [35]. Bit-balance

https://doi.org/10.1145/3366423.3380150
https://doi.org/10.1145/3366423.3380150

WWW °20, April 20-24, 2020, Taipei, Taiwan

and bit-uncorrelation ensure that a uniform number of training data
points are assigned to each hash code. Thus, minimizing the time
complexity of the retrieval task in the worst and average cases [13].
Along with low-quantization error, they alleviate the chance of as-
signing “very” similar data points to different codes. This preserves
the original locality structure of the data in the binary space and
improves the retrieval precision [10, 13, 16]. In spite of possessing
better retrieval performance, existing deep text-hashing methods
either ignore these objectives or construct them heuristically. We
argue that the retrieval performance is significantly improved by in-
corporating them in learning the deep hash functions. Furthermore,
we prove that it is possible to implicitly learn the hashing objectives
in an adversarial-training framework. Thus, we can eliminate the
need to tune several “hyperparameters” when explicitly defining
the heuristic hashing objectives in a learning-to-hash model.

To address these aforementioned challenges, we propose a novel
unsupervised Denoising Adversarial Binary Autoencoder (DABA)
model for the text hashing problem. The proposed DABA model
learns a non-linear hash function that captures an optimal represen-
tation directly from sequential input data and is robust to the noise
in the input data through the application of an adversarially-trained
denoising autoencoder. The main contributions of the paper are as
follows:

e Propose a novel unsupervised deep generative autoencoder-based
hashing model that jointly learns an efficient representation of
text documents directly from the raw text and a robust, deep
hash function in an end-to-end framework. To the best of our
knowledge, this is the first work in text hashing that learns a
hash function directly from the raw text data.

e Employ adversarial training procedure; the proposed method
introduces a new and efficient alternative to train binary neu-
rons that implicitly generate balanced and discriminative hash
codes without introducing additional hyperparameters or com-
plex hashing objective functions. Thus, fulfilling the desired char-
acteristics of an ideal hashing algorithm (as shown in Table 1).

e Propose a novel algorithm to train the adversarial, binary autoen-
coder that directly estimates the Wasserstein distance from the
primal domain by solving the Optimal Transport (OT) problem.
The proposed algorithm does not employ the familiar min-max
game, which is harder to train, because of the fluctuating gen-
erator’s cost. Thus, increasing its suitability for large-scale and
real-world text hashing problems.

e Demonstrate the effectiveness of our method in large-scale text
datasets and demonstrate the superiority of the proposed model
over state-of-the-art hashing techniques with both quantitative
and qualitative analysis of the performance.

The rest of the paper is organized as follows. We discuss the
related work in Section 2. In Section 3, we describe the details of our
proposed method. Finally, we present quantitative and qualitative
experimental results in Section 4 and conclude in Section 5.

2 RELATED WORK

In this section, we describe two lines of research that are closely
related to the proposed work: hashing and deep learning.

K. Doan et al.

2.1 Similarity Search and Hashing

2.1.1 Hashing. The most representative class for semantic similar-
ity search is hashing. Hashing techniques can be broadly classified
into supervised [5, 9, 22, 36] and unsupervised hashing [5, 10, 14, 26,
37, 38]. Although supervised hashing methods demonstrate better
performance [5, 29], they require human-annotated documents that
are expensive to obtain on massive-scale datasets, which are increas-
ingly prevelant in the current scenario. Scarcity of labeled training
data introduces the problem of train/test distribution mismatch
and poor local optima converge in supervised learning frameworks.
Therefore, their search performance degrades significantly.

Unsupervised hashing approaches address these problems by
learning hash functions without any supervised signal. Thus, these
methods are more suitable for large-scale corpora. Predominantly,
unsupervised hashing methods include shallow and deep models.
Locality sensitive hashing (LSH) approaches, which learn the hash
functions using random projection, are popular shallow models
with appealing theoretical properties [8, 21, 30, 34].

Data-dependent shallow-hashing methods, notably Spectral Hash-
ing (SpecHash) [37] and Semantic Hashing (SemHash) [26], demon-
strate significant performance improvements over LSH. SpecHash
learns compact, balanced and uncorrelated-bit codes by solving
the Eigenvector problem. However, the method strongly assumes
that the data points are uniformly distributed in a hyper-rectangle,
which restricts its application potential. Spherical Hashing (Sphe-
Hash) [14], on the other hand, employs hypersphere-based partition-
ing to achieve better and coherent quantization. Iterative Quantiza-
tion (ITQ) additionally minimizes the quantization error to generate
hash functions that better preserves the original locality structure
of the input data. However, these shallow models are linear and
hence cannot be applied to real-world high-dimensional datasets.

Unsupervised, deep-hash models [5, 26, 29, 38], display remark-
able performance improvements compared to the shallow models by
learning non-linear hash functions. Self-taught hashing (STH) [38]
decomposes the algorithm into learning the hash function (similar
to that of SemHash) and learning a hash function on unseen data
using a supervised learning method. Variational Deep Semantic
Hashing (VDSH) [5] employs variational autoencoders to learn a
generative model to reconstruct the original documents. Neural
Architecture for Semantic Hashing (NASH) [29] adopts a similar
variational autoencoder architecture as that of VDSH but models
the hashing codes as Bernoulli latent-variable. These existing deep
hash models, in spite of having better performance, do not exploit
the latent semantic and syntactic dependencies in the sequential
text data to learn the hash functions. For example, both VDSH
and NASH employ the hand-crafted TF-IDF input. To the best of
our knowledge, our proposed model is the first end-to-end hash-
ing model that captures the structured representation of raw text
documents.

2.1.2 Characteristics of Hash Functions. Prevalent hashing approaches
minimize the training objective as follows:

min Ex-p, L(x, f(x)) + Ex~p, DA H(F) (1)
k

DABA for Unsupervised Text Hashing

WWW 20, April 20-24, 2020, Taipei, Taiwan

Table 1: Characteristics of hashing algorithms along with the representative methods. Our proposed method satisfies all these
characteristics in an end-to-end framework without introducing complex cost functions and hyperparameters. o indicates the

method achieves the objective, but the procedure is ad-hoc.

LSH SpecHash | SpheHash ITQ SemHash STH VDSH NASH DABA

[21] [37] [14] [10] [26] [38] [5] [29] (Ours)
Non-linear X X X X v v v v v
Low Quantization Error X X X v o v X X v
Bit Balance X v v v o v v v v
Bit Uncorrelation X Vv v Vv Vv v v v v
Data Dependent X v v v v v v v v
Learn from Raw Text X X X X X X X X v
Implicit Generative Model X X X X X X X X v
Robustness to Noisy Data X X X X X X X X v

where Dy is the data distribution, L(x, f(x)) is the locality-preserving
loss of the hash function f(x) and Hi(f(x)) is a hashing objective
with A as its corresponding hyperparameter. Examples of Hy. are:
o Bit balance [37]: each bit has the same chance of being 0 or 1.
e Bit uncorrelation [37]: different bits are uncorrelated.
o Low quantization error [10]: low information loss by encoding the
real-valued representation space by the binary, discrete space.

© Cluster 2/500 e Cluster 0/500 o Code=10/231 e Code=01/497 o Code=10/122 e Code=01/129
 Cluster 1/500 o Code=11/405 ~ Code=00/367 e Code=11/629 - Code=00/620

1.0 J 10 e o 10

08 '*- 08 *o 08
o2 o e e %

06 . 06 06
= Ly o Xy 04 -y 0y

02 $ ¢y 02 , L 02 0‘
o o e

000 025 050 075 1.00 000 025 050 075 1.00 0.00 025 050 075 1.00

(a) Original (c) SpecHash (b) ITQ

* Code=10/682 e Code=01/682 « Code=10/183 e Code=01/183 * Code=10/507 e Code=00/493
o Code=11/68 Code=00/68 o Code=11/567 ~ Code=00/567 o Code=11/500

10 oo 10 10 B
o .
08 * . 08 08 * .
o2 « *e o . o2 %
. . .o o . .o
04 & v 04| & ~ 04| & 8
3 . g v :, v
. .
02| 8 T 02 |8 T 02| Y
TS SaaSP o Tl -

0.0 . 00 . 0.0

000 025 050 075 1.00 000 025 050 075 100 000 025 050 075 1.00

(d) VDSH (e) NASH (f) DABA-MLP

Figure 1: A synthetic example of 1500 data points generated
from three Gaussian clusters — 500 data points per cluster
(Figure 1a). Each method learns a 2-bit hash function with-
out using the supervised cluster-labels. An optimal hash
function achieves “code balance” and recovers the original
cluster assignment as much as possible.

In hashing, including Hj’s are important for improving the re-
trieval performance. For example, bit-balance and bit-uncorrelation
encourage “code-balance”, i.e., the condition where a uniform num-
ber of training data points is assigned to each hash code. Code-
balance minimizes the time complexity of the worst and average

cases, thus, improving the retrieval efficiency [13]. Furthermore,
code-balance and low-quantization error alleviate the chance of
assigning “very” similar data points to codes that have large Ham-
ming distances. Hence, they better preserve the original locality
structure of the data [10, 13, 16]. Preserving locality improves the
retrieval precision. It is critical that these three objectives are jointly
optimized in any efficient hashing algorithm. For example, with-
out the bit-uncorrelation constraint, an algorithm can still achieve
bit balance. A trivial example is assigning half the number of data
points to a code with all 0-bits and the remaining half to a code with
all 1-bits. However, the quality of the hash codes are apparently
poor because there are only two possible codes regardless of the
number of bits.

Figure 1 depicts a concrete example of data points that are in-
dependently drawn from three two-dimensional Gaussian clusters
(500 data points per cluster). Figure 1a illustrates the original gener-
ated data points. SpecHash and ITQ, the shallow-hashing methods,
could not learn a non-linear separation of the data points (Fig-
ures 1b-1c). On the other hand, VDSH and NASH, the deep-hashing
methods, are able to learn non-linear hash functions but they do not
achieve code-balance (the number of data points per hash code has
high variance, as shown in Figures 1d and 1e). The reason is that
they ignore bit-balance, bit-uncorrelation and low-quantization
error. Only the proposed model, DABA-MLP, is able to recover
the original cluster’s data point assignments almost perfectly and
achieve code-balance. DABA-MLP is a non-linear technique and,
more importantly, is constrained to generate both bit-balance and
bit-uncorrelation. Furthermore, distinct from existing approaches,
the hashing objectives (or Hy) are implicitly optimized (using
adversarial training) without tuning additional hyperparameters.

A summary of the characteristics of different text hash algo-
rithms is given in Table 1.

2.2 Semantic Hashing and Deep Learning

SemHash [26] is one of the early deep hash models. SemHash learns
a binary vector representation of the input data using Restricted
Boltzmann Machine (RBM) tuned autoencoders. The hashed bi-
nary vectors capture the semantic dependency of the input data
in a lower-dimensional space. However, RBM is harder to train
for achieving a generative power similar to that of a denoising

WWW °20, April 20-24, 2020, Taipei, Taiwan

Table 2: Notations used in this paper.

Notation ‘ Description ‘

X, X, X the original, corrupted and reconstructed input

x@ the i’"-indexed sample input document

Wy, 1, Wy,1 | predicted and actual words at position [in docu-
ment x

X predicted word vector at position [in document x

Dy data distribution

b,c sigmoid-representation vector and the correspond-
ing thresholded binary-code vector

z the sampled input (from B, (2)) to the discrimina-
tor

zj the i’" component of the vector z

b®, () the representation of the i’ h_indexed document
and the j*"-indexed Bernoulli sample, respectively

q(b) posterior distribution of b

f.g encoding and decoding functions

We[v] output (of dimension e) of the embedding lookup
of word v

L reconstruction loss function for the autoencoder

Ly distribution-matching loss (i.e., divergence)

OF,0p parameters of the encoder (generator) and the de-

coder

autoencoder [2]. Furthermore, denoising autoencoders produce
noise-invariant low-dimensional representations of the data lead-
ing to more robust hash functions [33].

To encourage the code layer to be “binary”, SemHash regularizes
the sigmoid units with deterministic Gaussian noise during train-
ing. This introduces additional hyper-parameters that increase the
complexity of the learning process. Although, SemHash and similar
semantic models [36, 38] do not require additional hashing objective
functions such as the quantization or bit-entropy loss (i.e., is Hi’s),
the sigmoid layer outputs more activation values near 0 than near
1 (because of the asymmetry between 0 and 1 of the RBM’s energy
function). Thus, selection of a threshold value becomes heuristic
and can be suboptimal. Our DABA training squashes activations
of the sigmoid layer almost equally near 0 and 1, achieving “bit
balance” [35] (see Figure 4) and encouraging the choice of the same
threshold value (0.5) in all datasets.

2.2.1 Representation Learning. Recurrent neural network (RNN)
provides a natural and conceptual way to capture the characteristics
of sequential data [11]. RNNs have been successfully applied in
several domains [25, 41]. In [20], the authors proposed a method
to compress a sequence into its vector representation. Similar to
RNN, Convolutional Neural Networks (CNN) are also proposed
for learning an efficient representation that captures semantic and
syntactic structures of text documents for various problems [39, 42].
To the best of our knowledge, there is no prior work in the text
domain to simultaneously learn document representation and an
efficient hash function by directly exploiting such structures from
raw textual data.

K. Doan et al.

2.2.2 Generative Adversarial Network and Adversarial Training. Gen-
erative Adversarial Network (GAN) has recently gained popularity

due to its ability to generate realistic samples from the data distri-
bution [12]. A prominent feature of GAN is its ability to “implicitly”
match outputs of a deep network to a pre-defined distribution using

the adversarial training procedure. In fact, adversarial training has

been selected in several works as a regularization of the latent repre-
sentation of the autoencoders [17, 24]. [17] report that adversarially-
trained autoencoders efficiently learn the intrinsic manifold of the

data, especially, structured data without overfitting and poor local

minima convergence. Furthermore, in contrast to other generative

models such as Variational Autoencoders [19], it is possible to learn

an “optimal” hash function implicitly by adversarial regularization

of the hash function with a “binary” distribution to guide the learn-
ing process without imposing any additional constraints Hy’s [7].
However, training adversarial autoencoders remains challenging

and ineflicient because of the alternating-optimization procedure

(min-max game) between the generator and the discriminator. For

example, [7] employs the original min-max GAN objective [12],
which suffers from mode-collapse and vanishing gradient [1]. More-
over, in min-max optimization, the generator’s loss fluctuates dur-
ing training instead of “descending”, making it extremely challeng-
ing to know when to stop the training process. Wasserstein GAN

overcomes a few of these limitations (specifically, mode-collapse

and vanishing gradient) [1]. However, it approximates the Wasser-
stein distance by employing the Kantorovich-Rubinstein dual, thus,
resulting in a similar min-max game between the generator and the

critic. [31] proposes Wasserstein Autoencoder but still employs the

min-max game. We propose to directly approximate the Wasser-
stein distance from the primal direction by solving the Optimal

Transport problem [4].

3 PROPOSED MODEL
3.1 Problem Formulation

Given a query document e, the similarity search problem is to find a

set of K similar documents S(e) from a database X = {x(1), x®, .. ™)}

of N documents such that, given sim(x, y) as a pre-defined similar-
ity function that measures the similarity between two documents
x and y, we have sim(e, x) < sim(e,y) for all x € S(e),y € X \ S(e).

In hashing, the goal is to find a hash function ¢ = f(x) whose
output ¢, called “hash code”, is a low-dimensional, binary vector
in {0, 1}1¢!, where the notation |c| is the cardinality (or dimension)
of ¢, such that the relationship between x and y, through sim(x, y),
is preserved in {0, 1}lel, Learning a discrete-output function f is
intractable [35], thus we instead learn a continuous function b =
f(x) e RI?|, from which c is obtained by thresholding b. In the text
domain, each data point x or y is a vector in a high-dimensional
space R", such as the TF-IDF vector, or a sequence of one-hot
vectors of the words representing the raw text document. |b| is
typically small and takes a value between 16 to 128. The notations
used in this paper are given in Table 2. In the following sections,
we will discuss the components of the proposed method.

3.2 Binary Autoencoder

Given a dataset X = {x|x ~ Dy}, a binary autoencoder defines
an encoding function f : x — b that maps each data point x

DABA for Unsupervised Text Hashing

D(b)

real/fake

samp le
X: machine - is fun and - 2z~Bernoulli,(p)

X: machine learning is fun and challenging

(a) DABA-RNN

0
1
ﬁ sample
X: machine - is fun and - z~Bernoulli, (p)

X: machine learning is fun and challenging

WWW 20, April 20-24, 2020, Taipei, Taiwan

=)

%]REXT

D(b)

real/fake

(b) DABA-CNN

Figure 2: Overall system architecture of the proposed Denoising Adversarial Binary Autoencoder (DABA) model.

into a point b € R!?!in the coding space and a decoding function
g : b — x that recovers x from b. When the encoder’s output
layer (i.e. the last layer) is sigmoid, thresholding the activations b
(e.g. at 0.5) will return a binary code vector ¢ € {0, 1}18 which is
considered as the discrete hash code of the input x. Modeling the
hash function as a structured, deep encoder, captures complex latent
document representation from the raw text. Therefore, we define

the binary autoencoder with the following network structure:

e An encoder function f : x — b maps a sequence of text x into
a low-dimensional vector b. In our work, we model f as either
a bidirectional RNN or a convolutional neural network (CNN),
followed by a single-layer projection onto the sigmoid layer:

— The RNN encoder (Figure 2a) is a multi-layer, bidirectional
RNN with Long-Short-Term-Memory (LSTM) Units. We ob-
serve similar performance using more than one layer and other
types of hidden units, such as Gated Recurrent Units [6].

— The CNN encoder (Figure 2b) consists of multiple convolu-
tional layers. For example, in our experiments on 20News-
Groups and Reuters datasets, given an embedding input X €
Re*T where T is the max length of input sequences and e
the word’s embedding dimension, we find that the best per-
formance is achieved by using two convolutional layers with
Rectified Linear Unit (ReLU) activation function with kernels
{5xe,5x%x1}, strides {2, 2} and numbers of filters {300, 600}, re-
sulting in {c1 X 300, ¢z X 600} feature maps, respectively (where
c1 and c; are the dimensions of the feature maps at layer 1 and
layer 2, respectively). This is followed by a max-out layer of
300 filters of ¢y X 1 kernel and a stride of 1.

A decoder function g : b — x that reconstructs the input x as

x. The function g is modeled as a single-layer linear projection

followed by an RNN (for an RNN-encoder) or a CNN (for a CNN-

encoder) to reconstruct the input x:

— The RNN decoder (Figure 2a) is a multi-layer LSTM network
whose output X at position [in the reconstructed sequence x
of L words is the predicted softmax probability of word w,. ;
at position / in the reconstructed sequence %, defined as

PO = v) = gy, We[]) @)

where h; is the hidden state representation of the LSTM de-
coder at time-step [, W, [v] is the embedding of word v, and
¢(v1, v2) is the softmax function.

— The CNN decoder (Figure 2b) consists of deconvolutional (con-
volutional transpose) layers to decode the hidden representa-
tion back to the original embedded input [42]. The probability
that the predicted word at position [in the reconstructed se-
quence X, Wy 1, is v can be defined as follows:

exp(t ! cos(%;, We[0]))
2 eV eXP(Tfl cos(x;, We[v']))
where 7 is the Gumbel-softmax parameter, V is the vocabulary,

and cos(.) is the cosine distance function. We use 7 = 0.01 in
our experiments.

®)

Py, =v) =

It is important to note that modeling the encoder/decoder with
other network architectures such as Attention [32] is a straightfor-
ward extension to our paper. The objective function of the binary
autoencoder described above can be written as the word-wise neg-
ative log-likelihood, averaged across all documents, as follows:

1 .
La = Ex-D, Z Z —log P(Wx,l = Wx,l) (4)
I=1..L
where w, ; is the actual word at position [in the input document
X.

3.3 Denoising Binary Autoencoder

As discussed in Section 2, denoising autoencoders achieve genera-
tive power similar to that of RBM-based autoencoders which are
arduous to train [2]. Moreover, the denoising component allows
the autoencoder to robustly learn the hash function of corrupted
data by utilizing the semantic relationship of uncorrupted words in
the text. Therefore, we propose to extend the binary autoencoder,
as defined in Section 3.2, with a denoising component.
Specifically, for each word-position in a document, we randomly
remove the word with probability py. pg is, therefore, the fraction
of the words of the input sequences that need to be removed. The
input to the model is the corrupted input x and the model attempts
to recover x. Denoising autoencoders are also known to help in

WWW °20, April 20-24, 2020, Taipei, Taiwan

learning a smooth, low-dimensional manifold of the data similar to
that of RBMs [3]. We call this model Denoising BA (DBA).

3.4 Denoising Adversarial Binary Autoencoder

An autoencoder defines an encoding distribution g(b|x) and a decod-
ing distribution p(x|b). Consequently, the encoding step imposes a
posterior distribution on the coding space as follows:

4(b) = / 4(blx)Dx (x)dx 5)

The posterior distribution is also synonymous to the hash’s
output distribution. Therefore, if we force q(b) to “agree” with a
binary-like distribution, such as a discrete “Bernoulli prior”, that has
all desired characteristics of a good hashing function as discussed
in Section 2, the adversarial training procedure will force the en-
coder function f(x) to generate binary codes with the same desired
characteristics. Specifically, an input vector z is a sample from a
Bernoulli distribution By (z) with a parameter p if each of its com-
ponents z; is independently drawn from the Univariate Bernoulli
distribution with parameter p. Given z ~ By (z), we regularize the
posterior distribution g(b) to be similar to By(z). The adversarial
binary autoencoder (ABA) is trained with dual objectives as follows:

omin La+Lm (6)
where OF is encoder’s parameters, ©p is the decoder’s parame-
ters and

(1) Lj is the reconstruction error from the encoding space b in the
decoding step, defined in Section 3.2.

(2) Ly is the regularization term. It is the divergence of the encod-
ing posterior distribution g(b) and the Bernoulli-prior distribu-
tion Bp(z) where p is set to 0.5 (hereafter, we denote By_5(2)
as B(z)). An intuitive explanation of the regularization is that
every component of b will learn to divide as optimal as possi-
ble the original space into two halves (thus its activation has
about 50% chance of being closer to 1 or closer to 0 — a “bit
balance” [35]), where the points in each half are more similar
to those in the same half compared to those in the other half -
“bit uncorrelation” [35].

We solve Equation (6) by playing a game between the generator
and discriminator, equivalently minimizing the Jensen Shannon
divergence [17]; in other words, the training objective is as follows:

min |Lg + max LM) (7)
©f,0p (Disc

where ©pj;c is the parameters of the discriminator. The authors
of [31] generalize this framework to Wasserstein distance, but it
employs a similar min-max game. In this paper, we follow the primal
direction of estimating the Wasserstein distance, thus, removing
the min-max game. Specifically, in the primal domain, Wasserstein
distance is defined as follows:

W(q(b), B(z)) = inf / b,2)d(b,z)dbdz (8
(q(b), B(2)) v 5y (b’zwp(2)d(b, z)dbdz (8)

where II(q(b), B(z)) is the set of all possible joint distributions
of b and z whose marginals are q(b) and B(z), respectively, and
d(b, z) is the cost of transporting one unit of mass from b to z.

K. Doan et al.

This approach is equivalent to solving the optimal transport (OT)
problem, whose objective is to find the optimal transport plan
to move masses from the generated distribution g(b) to the true
distribution B(z). Given two finite samples of N examples of b and
N examples of z, the empirical transport cost can be formulated as
the following Linear Programming (LP) problem:

N N
W(q(b). B(2)) = min Z ; My d@,20) = minMo D (9)

where M is the assignment matrix, D is the cost matrix where
Djj = d(b(i), ZU)) and O is the Hadamard product. The LP formula-
tion has the following constraints:

N

ZMI-,]- =1Vj=1,..,N (10)

1

N

ZMU =1,Vi=1,..,N 11)

j
Mi,j€{0,1},Vi=l,...,N,Vj=1,...,N (12)

It is important to note that both M; j and d(bD, z1)) are func-
tions of ©f. The “distribution matching cost” Lys in Equation (6) is
equivalent to W(q(b), B(z)). Given the optimal assignment matrix
M that solves this LP problem and a learning rate «, we can update
the parameters of the generator, O, as follows:

dW*(q(b), B(2))
o 0, 72)

oV _ . _
E E 00g

(13)

OW*(q(b),B(z)) OM* ., 0D
—_— = D+M — 14
965 96 07 M © e 4
While M* depends on O, it is known that a small perturbation

of O does not change the transport plan; that is gTM; = 0. Thus, we
update the generator using only the second term in Equation (14),
Mo (?TDE, which is easy to compute given a differentiable distance
function d(b, z). In our work, we use the Euclidean distance where
d(b,z) = ||b - z|l2.

Minimizing Ly drives the distribution g(b) closer to that of
B(z). Intuitively, this is assigning each data point b to the closest
sample z in the Euclidean space (given that d(b, z) is the Euclidean
distance). Since the Bernoulli-data generating process samples each
component zj of z independently (hence, each bit is uncorrelated)
from a Univariate Bernoulli distribution with probability 0.5 (hence,
each bit has 0.5 probability of being 1), matching g(b) against the
B(z) is exactly equivalent to maximizing bit-uncorrelation and bit-
balance codes after the assignment. The assigned z of the vector
b can also be viewed as its quantized vector c. In other words, ¢
is approximately the same as z. Consequently, it minimizes the
quantization error when L2-norm cost d(b, z) = ||b — z||5 is applied
(because the quantization error is defined as ||b — c||2).

The implicit distribution-matching process between b and z is
illustrated in Figure 3. At the beginning of the training process, the
distribution of b-neurons’ output (or activations) is a Gaussian (a
result of uniform-random weights’ initializations). However, after

DABA for Unsupervised Text Hashing

several training steps, the distribution of b’s activations become
very similar to that of the sampled values of z from B(z).

—— Distribution of b's activations
——- Distribution of 's values

—— Distribution of b's activations
——- Distribution of 2's values

30000 30000
25000 25000
2
20000 & 20000 &
b 3
15000 2 15000 2
= c
10000 £ 10000 &
**
5000 5000
0 0
00 05 10 00 05 10
(a) Training Data (b) Validation Data

Figure 3: Distribution of activations of b after several
training steps and distribution of values of z, sampled
from Bernoulli,(0.5), of DABA created on the 20Newsgroup
dataset.

ALGORITHM 1: DABA Model Training

Input: Training data X,

Denoising parameter pg,

Binary code size |b],

Bernoulli sampling parameter p,

Number of training iterations K.
Output: {©f} parameters of the encoder
for number of training iterations K do

e Sample a minibatch of m examples {x(1), .. x(")},
e Randomly drop elements of x() with probability py
to x(1).
e Sample m vectors {z(l), z<m)} where z() ~ By(2).
e Update the autoencoder parameters, O and ©p
by minimizing L 4 in Eq. (4).
e Solve the LP problem given in Eq. (9) to find M*.
e Update the encoder parameters O
using the update rule described in Eqgs. (13) and (14).

end

We call this model as Denoising Adversarial BA (DABA). The
overall architecture of our DABA-RNN and DABA-CNN models is
shown in Figure 2. The adversarial training algorithm is described

3000

2000 3000

1000

0 02 04 06 08 1 0 02 04 06 08 1
Activation Probabilities Activation Probabilities

(a) DABA-Epoch 60 (b) SM-Epoch 60

Figure 4: Activations (values of b) of DABA and Semantic
Hashing (SM) after 60 epochs.

WWW 20, April 20-24, 2020, Taipei, Taiwan

in Algorithm 1. For training our model, we adopt the standard mini-
batch stochastic gradient descent procedure, using Adam optimizer
[18] with p = 0.5.

Figure 4 depicts the distribution of the activations (b) of encoder’s
output layer on the 20NewsGroups dataset for Semantic Hashing
and DABA with TF-IDF input [27] and multi-layer perceptrons
(MLP) as encoder/decoder (called DABA-MLP with similar network
architecture as that of Semantic Hashing). In both methods, we
observe that the activations squashed out to the borders near 0 and 1.
DABA (shown in Figure 4(a)), however, learns to output activations
that are more equally squashed out than those of Semantic Hashing
(shown in Figures 4(b)). This allows us to simply pick 0.5 as a
threshold for binarizing the activations, as compared to a heuristic
suggestion of 0.1 for Semantic Hashing [26].

4 EXPERIMENTAL RESULTS
4.1 Datasets Used

We utilize the following datasets in the performance evaluation
experiments of the proposed DABA model.

e 20NewsGroups ': A collection of 18,821 newsgroup documents
categorized uniformly into 20 different newsgroups. The data is
split into 90% of the documents that serve as the database and
10% of the documents for querying.

e Reuters %: A collection of 12,902 Newswire stories provided by
Reuters, Ltd. and organized into 135 categories. We randomly
split 90% of the documents as the database and the remaining
10% of the documents for querying.

e DBpedia [40]: A collection of 630,000 documents classified into
14 non-overlapping ontology classes. The data is split into 560,000
training documents that serve as the database and 70,000 testing
documents for querying.

4.2 Evaluation Procedure

For evaluating the performance of the proposed model, we follow
the standard mechanism that is widely accepted in the context of
the ranking problem- the precision metric at various threshold
values m (P@m):

|retrieved, relevant documents| (15)
where the threshold m is the number of top ranked candidate docu-
ments, based on their Hamming distances to the query document,
obtained by the algorithms for the retrieval task. For the experi-
ments, we set m to be 10, 50, and 100.

In addition to this, we calculate the limited areas under the
Precision-Recall curves (equivalent to limited mean average pre-
cision — or MAP) up to a certain threshold m, called MAP@m for
different methods [28]. In our experiments, we report MAP@1000.

precision@m =

|retrieved documents|

4.3 Comparison Methods

We compare the performance of the proposed method with various
representative similarity-search methods.

e Locality Sensitive Hashing (LSH) [21]: the popular data-independent,

shallow hashing method using random projection.

!http://qwone.com/~jason/20Newsgroups/
2http://www.daviddlewis.com/resources/testcollections/reuters21578/

http://qwone.com/~jason/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/reuters21578/

WWW °20, April 20-24, 2020, Taipei, Taiwan

K. Doan et al.

Table 3: Performance comparison of different methods using standard metrics (precision at various threshold values m and
mean average precision) for the document retrieval task on various text datasets.

20Newsgroup Reuters DBpedia

P@10 | P@50 | P@100 | MAP | P@10 | P@50 | P@100 | MAP | P@10 | P@50 | P@100 | MAP
LSH 0.456 0.388 0.301 0.259 | 0.455 0.429 0.386 0.389 | 0.507 0.485 0.417 0.296
SpecHash 0.511 0.448 0.382 0.307 | 0.782 0.719 0.651 0.429 | 0.519 0.455 0.431 0.323
SpheHash 0.512 0.455 0.385 0.316 | 0.752 0.710 0.664 0.421 0.463 0.427 0.408 0.304
1TQ 0.524 0.457 0.384 0.320 | 0.799 0.731 0.667 0.430 | 0.516 0.457 0.422 0.336
SemHash 0.520 0.435 0.390 0.322 | 0.780 0.703 0.650 0.462 | 0.553 0.503 0.452 0.313
STH 0.523 0.501 0.565 0.328 | 0.817 0.798 0.755 0.476 | 0.568 0.506 0.483 0.312
VDSH 0.552 0.550 0.431 0.339 | 0.839 0.815 0.775 0.495 0.634 0.531 0.475 0.324
NASH 0.579 0.544 0.539 0.349 | 0.867 0.840 0.799 0.501 0.610 0.557 0.505 0.331
DBA 0.491 0.511 0.562 0.301 0.810 0.788 0.679 0.471 0.596 0.526 0.479 0.325
DABA-MLP | 0.559 0.542 0.565 0.339 | 0.836 0.831 0.772 0.497 | 0.629 0.541 0.511 0.341
DABA-RNN | 0.628 0.579 0.565 0.366 | 0.859 0.833 0.830 | 0.520 | 0.641 0.576 0.539 0.348
DABA-CNN | 0.639 | 0.612 0.590 0.341 0.860 0.861 0.820 0.509 | 0.655 | 0.598 0.537 0.358

o Spectral Hashing (SpecHash) [37]: an unsupervised shallow hash-
ing method whose goals are to preserve locality and find balanced,
uncorrelated hashes by solving the Eigenvector problem.

e Spherical Hashing (SpheHash) [14]: a hypersphere-based space-
partitioning shallow hashing method.

e [terative Quantization (ITQ) [10]: the state-of-the-art shallow
hashing method that alternately minimizes the quantization error
to achieve better hash codes.

e Semantic Hashing (SemHash) [26]: the widely-used unsuper-
vised deep hashing method where the hash function is modeled
as a deep generative model using Restricted Boltzmann Machine.

o Self-taught Hashing (STH) [38]: an extension of SemHash that
also learns a hash function on unseen data.

o Variational Deep Semantic Hashing (VDSH) [5]: the deep hashing
method that learns the hash function through a generative model
using variational Autoencoders (VAE) with TF-IDF input.

o Neural Architecture for Semantic Hashing (NASH) [29]: the state-
of-the-art deep hashing method that, similar to VDSH, learns
the optimal hashing using VAE whose input are TF-IDF vectors.
NASH models the hashing codes as a Bernoulli latent-variable.

e Denoising Binary Autoencoder (DBA): the binary autoencoder as
defined in Section 3.2, with denoising input.

o Denoising Adversarial Binary Autoencoder (DABA-MLP): our
proposed adversarially regularized autoencoder (described in
Section 3.4) with multi-layer perceptrons as encoder/decoder
whose input are the TF-IDF vectors of the documents.

e DABA with RNN encoder/decoder (DABA-RNN): our proposed
DABA model (in Section 3.4) with RNN encoder and RNN de-
coder.

o DABA with CNN encoder/decoder (DABA-CNN): our proposed
DABA model (in Section 3.4) with a Convolutional encoder and
Deconvolutional decoder.

First, we pre-process the data by removing common stop words.
Then, we transform each document into its TF-IDF [27] vector rep-
resentations with 2,000 components for 20Newsgroup and Reuters

and 5,000 components for DBpedia. For DABA-CNN and DABA-
RNN, we learn the hash functions directly from the sequential text
data.

We run the experiments of LSH using random projection on
TF-IDF input. For SemHash and STH, we employ the network sizes
similar to the ones used in the original papers [26, 38] for both
the 20Newsgroup and Reuters datasets and two layers of 1000 —
500 units for DBpedia. We use similar network sizes for DABA-
MLP. For 20Newsgroup and Reuters, VDSH’s networks use 1,000
hidden nodes (as suggested in [5]), while NASH’s networks have
two layers of 500 — 500 units (as suggested in [29]); for DBpedia,
1,500 hidden nodes for VDSH and two layers of 1000 — 500 units
for NASH. For DABA-RNN, we use an embedding size of 200 for
20Newsgroup and Reuters and 300 for DBpedia. For all DABA
methods, the discriminator D is a MLP with two layers of 500 — 500
hidden units. To choose the denoising parameter p;, we perform a
grid search with p; ranging from 0 to 0.5. For all these methods, we
report the average MAP@1000 (shown as MAP) and Precision@k by
repeating the experiments three times in order to ensure statistically
meaningful results.

We implemented our proposed methods using Tensorflow?. In
our experiments, we employ the learning rate of 0.001 for 20News-
group and Reuters datasets; 0.01 for the DBpedia dataset. We use a
dropout rate of 0.2 and 0.5 for the small and large datasets, respec-
tively. We also apply batch normalization [15] for our DABA-CNN
method. Given N examples, the best method of solving the OT’s
LP program has a cost of approximately O(N?-> log(N D)), where
D= maxi,jd(b(i), z(j)) and the distances d(b(i), z(j)) are scaled up
to be integers [4]. While this is computationally expensive for large
N, the cost is less than 100ms (where N is less than 2048) in a
conventional CPU . Therefore, it is entirely possible to implement
this LP program in a mini-batch SGD training. In our experiments,
we operate on a large mini-batch size of 500 examples in training

3https://www.tensorflow.org/
“https://github.com/gatagat/lap

https://www.tensorflow.org/

DABA for Unsupervised Text Hashing

DABA. This reduces the variance of the empirical primal Wasser-
stein estimate, while making the training process very efficient.
The code of our proposed method is released on Github °.

4.4 Results

4.4.1 Retrieval Performance. In this experiment, we measure the
performance of the compared methods on the document retrieval
task. Table 3 shows the average precision values at various retrieval
thresholds m and the average MAP. Improvements of our models
over the compared methods are statistically significant according
to the corresponding paired t-tests (p-value < 0.01). As expected,
shallow-hash functions have worse performance than other deep
hashing methods. SemHash and DBA have comparable performance
across the metric, which supports our discussion/claims in Section
3.3 that denoising autoencoders achieve a similar result as that of
RBM-based autoencoders. However, RBM-based autoencoders are
harder to train.

While there are mixed results when comparing the performance
of the existing shallow hashing methods and the compared deep
models, it is clearly observed that the proposed DABA-MLP signifi-
cantly improves the retrieval quality compared to all these methods,
including DBA - the DABA-MLP version that is not adversarially
regularized. This supports our discussion/claims in Section 2 that
adversarial training, besides generating better hash codes, helps
the network learn a better semantic manifold of the data than that
of a similar network but without adversarial regularization (this
statement will again be supported by the qualitative experiments
about the learned manifold of the data in Section 4.4.2). Finally,
from Table 3, it is clearly noticed that DABA-RNN and DABA-
CNN significantly outperform all other methods for most of the
retrieval metrics. Also, DABA-CNN achieves better results com-
pared to DABA-RNN, albeit comparable. We conjecture that the
superior performance of all DABA methods is due to the following
reasons: (1) the hash functions learned by DABA better preserve the
semantic manifold of the documents (DABA-MLP performs better
than DBA and SemHash/STH), (2) exploiting the semantic and syn-
tactic structures of text documents (one of the main contributions
of this paper) results in better retrieval quality (DABA-RNN/CNN
perform better than DABA-MLP) and (3) the learned hash functions
generate better hash codes (DABA-MLP performs better than all
other shallow and deep models).

4.4.2 Hashing Space Manifold. In this experiment, we plot the em-
bedding of the documents in the binary address space using the
2-D t-SNE projection [23], of the learned binary codes of various
methods. In Figure 5 (created using the 20NewsGroups dataset)
the documents belonging to the same topic are represented using
the same color. As observed in this figure, in the DABA-RNN/CNN
results, more documents belonging to the same topics are clus-
tered together (while the clusters are more distant from each other)
compared to the selected shallow and deep methods. Most “Reli-
gion/Christian” documents (purple) or “Sport/Baseball” documents
(green), for example, are better separated from the rest of the docu-
ments. This demonstrates the effectiveness of the proposed method

Shttps://github.com/khoadoan/daba-hashing

WWW 20, April 20-24, 2020, Taipei, Taiwan

in preserving the semantic manifold of the documents in the coding
space.

4.4.3 Analysis with Missing Data. In this experiment, we evaluate
the performance, specifically Precision@100, of various selected
methods against our proposed models when the data contains miss-
ing values. In the 20NewsGroups dataset, for each document, we
randomly remove a predefined fraction of the words ranging from
0% to 100% in the query documents. We investigate the performance
of our methods, DABA-CNN and DABA-RNN, when the denoising
components are removed, resulting in ABA-CNN and ABA-RNN,
respectively. This allows us to carry out an ablation study to under-
stand the contribution of the proposed denoising component with
regards to learning robust hash functions.

(a) SpecHash (b) VDSH

(c) NASH

(d) DABA-RNN

Figure 5: Two-dimensional t-SNE manifold visualization of
the coding space (values of b) for five randomly selected top-
ics, namely, Computer/Windows (5, Red), For Sale (6, Yellow-
Green), Sport/Baseball (9, Green), Science/Cryptology (11,
Blue), and Religion/Christian (15, Purple).

Figure 6 shows the performance of the methods at various per-
centages of missing data for different bit sizes on the 20Newsgroup
dataset. The compared models, including ABA-CNN and ABA-RNN,
have steeper performance decline than those of DABA-CNN and
DABA-RNN when the missing data rate increases. DABA-CNN and
DABA-RNN are more robust than the other methods in the pres-
ence of missing data. Note that all methods converge to the same
performance, that is of the random guess, when the missing data
rate is approaching 100%. The results demonstrate the robustness
of employing the denoising component within our hashing frame-
work toward missing data, a realistic scenario when deploying the
similarity search system in a real-world environment.

WWW °20, April 20-24, 2020, Taipei, Taiwan

K. Doan et al.

RS ~e- ITQ
05| LTS ~e- NASH
’ S —e ABARNN
N --e: ABA-CNN
04 oS —- DABA-RNN
- N .
AR —e— DABA-CNN
8 e N
= W)
®03 \ A\
o "\
A
%
0.2 1" \‘
| Y. \
A Q
0.1 e N\
- R R
I
0 20 40 60 80 100 0 20

Percentage of data missing

(a) 32-bit code

40

Percentage of data missing

(b) 64-bit code

—e- MQ 05 t‘g._\‘._\ —e- ITQ
—e- NASH “wy BN —e- NASH
—e ABA-RNN TN —e ABA-RNN
--e+ ABA-CNN 0.4 0,}\ \.\ --e+ ABA-CNN
—e- DABARNN RN "~ —e- DABARNN
—— DABA-CNN N, N —— DABA-CNN
o ~ .
203 AN
oA
® NN
M D
0.2 TN AN
Tong, N
RNy N
. .,
S 01 TNy
. . %
-‘b.,,]’_ “""‘\
60 80 100 0 20 40 60 80 100

Percentage of data missing

(c) 128-bit code

Figure 6: Precision@100 of various methods including DABA-CNN and DABA-RNN for various bit sizes on the 20Newsgroup
dataset. ABA-RNN and ABA-CNN are our proposed methods without the denoising component.

0.355
0.350

o

< 0335

0.340

—s— DABA-RNN
—— DABA-CNN 030

—e— DABA-RNN
—4— DABA-CNN

0335

0 20 40 60 80 100 120 0 20 40 60 80 100 120
Code Size Code Size

(a) 20NewsGroups (c) DBpedia

Figure 7: Performance results (MAP) when varying the size
of the learned binary codes on 20Newsgroup and DBpedia.

DABA Minimax-Adversarial Autoencoder
-
59
-6
@ T ;
5 5 -
& 58 @
g g
857 g 9
5 5 -10
g ®
2 56 £ -1
8 3
-12
55 -13
[2000 4000 6000 8000 10000 4000 5000 6000 7000 EO00 9000 10000
Training Iteration Training lteration
(a) DABA Training (b) Min-max Training

Figure 8: Convergence behavior of our proposed loss func-
tions during the training process of 20Newsgroup. DABA
is trained using the empirical OT loss without the min-
max game. The min-max autoencoder is trained using the
Wasserstein Kantorovich-Rubinstein dual. In this game, the
loss has poor fluctuation, thus is it difficult to know when
to stop training.

4.4.4 Parameter Sensitivity. In this experiment, we study the rela-
tionship between the embedding size B of the binary code b and the
retrieval performance. Figure 7 illustrates the MAP performance of
DABA-CNN as the value of B is varied from 4 to 128. We observe
that the retrieval performance quickly increases during the initial
phase (when using smaller codes), following which it reaches the
optimal value. Increasing the code sizes after that optimal code size

results in neither performance gain nor any significant performance
loss. This suggests that if we train DABA networks with a suffi-
ciently large code size B, we are guaranteed to obtain a near-optimal
performance. This experiment illustrates that the performance of
the proposed DABA model is not sensitive to the learned code size
parameter.

4.4.5 Stability during training. One of the subtleties of training
a min-max adversarial network is to decide the stopping crite-
rion for the training process, that is “when does the model reach
the equilibrium?”. Figure 8 illustrates the generator’s loss, Ly, for
Wasserstein-Autoencoder [31] and DABA in the 20Newsgroup train-
ing. We observe that the loss fluctuates in the min-max game during
training, while our proposed OT loss gradually descends. This dis-
plays the training efficiency of our proposed training algorithm.
This effectively suggests that we can utilize the criteria to detect
convergence such as early stopping to automatically train DABA,
making it suitable for real-world hashing problems.

5 CONCLUSION

We proposed a novel and efficient denoising adversarial binary
autoencoder for the text hashing problem. To achieve this, we de-
veloped a new and effective mechanism to constrain the network’s
hidden layer and force them to become binary by regularizing the
hash-function learning process with an adversarial network with a
discrete distribution prior and corrupted input that the denoising
autoencoder must reconstruct. Employing the OT formulation, we
train our proposed model without the min-max game and signifi-
cantly stabilize the training process of the adversarial autoencoder.
We demonstrate that the proposed model using RNN or CNN en-
coder/decoder, that effectively exploits the semantic and syntactic
dependencies of text documents, outperforms other existing state-
of-the-art semantic-similarity search methods.

ACKNOWLEDGMENTS

This work was supported in part by the US National Science Foun-
dation grants IIS-1619028, IIS-1707498 and IIS-1838730.

DABA for Unsupervised Text Hashing

REFERENCES

(1]

[2

—

(3]

[11

[12]

(13

[14]

[15]

[16

[17]

[18

[19]

[20]

[21]

Martin Arjovsky, Soumith Chintala, and Léon Bottou. 2017. Wasserstein gan.
arXiv preprint arXiv:1701.07875 (2017).

Yoshua Bengio, Li Yao, Guillaume Alain, and Pascal Vincent. 2013. Generalized
denoising auto-encoders as generative models. In Advances in Neural Information
Processing Systems. 899-907.

David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. 2018. Understand-
ing and improving interpolation in autoencoders via an adversarial regularizer.
arXiv preprint arXiv:1807.07543 (2018).

Rainer E Burkard, Mauro Dell’Amico, and Silvano Martello. 2009. Assignment
problems. Springer.

Suthee Chaidaroon and Yi Fang. 2017. Variational deep semantic hashing for
text documents. In Proceedings of the 40th International ACM SIGIR Conference on
Research and Development in Information Retrieval. ACM, 75-84.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,
Fethi Bougares, Holger Schwenk, and Yoshua Bengio. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Machine Translation.
In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). 1724-1734.

Khoa D Doan, Pranjul Yadav, and Chandan K Reddy. 2019. Adversarial Factor-
ization Autoencoder for Look-alike Modeling. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. 2803-2812.
Wei Dong, Zhe Wang, William Josephson, Moses Charikar, and Kai Li. 2008.
Modeling LSH for performance tuning. In Proceedings of the 17th ACM conference
on Information and knowledge management. ACM, 669-678.

Tiezheng Ge, Kaiming He, and Jian Sun. 2014. Graph cuts for supervised binary
coding. In European Conference on Computer Vision. Springer, 250-264.
Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013.
Iterative quantization: A procrustean approach to learning binary codes for
large-scale image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence 35, 12 (2013), 2916-2929.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. 2016. Deep learning. MIT
press.

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014. Generative adversarial
nets. In Advances in neural information processing systems. 2672-2680.

Junfeng He, Shih-Fu Chang, Regunathan Radhakrishnan, and Claus Bauer. 2011.
Compact hashing with joint optimization of search accuracy and time. In CVPR
2011. IEEE, 753-760.

Jae-Pil Heo, Youngwoon Lee, Junfeng He, Shih-Fu Chang, and Sung-Eui Yoon.
2012. Spherical hashing. In Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on. IEEE, 2957-2964.

Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In International
Conference on Machine Learning. 448-456.

Alexis Joly and Olivier Buisson. 2011. Random maximum margin hashing. In
CVPR 2011. IEEE, 873-880.

Yoon Kim, Kelly Zhang, Alexander M Rush, Yann LeCun, et al. 2017. Adversari-
ally regularized autoencoders for generating discrete structures. arXiv preprint
arXiv:1706.04223 (2017).

Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

Diederik P Kingma and Max Welling. 2013. Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114 (2013).

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun,
Antonio Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Advances in
neural information processing systems. 3294-3302.

Jure Leskovec, Anand Rajaraman, and Jeffrey David Ullman. 2014. Mining of
massive datasets. Cambridge university press.

WWW 20, April 20-24, 2020, Taipei, Taiwan

Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012. Super-
vised hashing with kernels. In Computer Vision and Pattern Recognition (CVFR),
2012 IEEE Conference on. IEEE, 2074-2081.

Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579-2605.

Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, lan Goodfellow, and Brendan
Frey. 2015. Adversarial autoencoders. arXiv preprint arXiv:1511.05644 (2015).
Tomas Mikolov, Martin Karafiat, Luk4s Burget, Jan Cernocky, and Sanjeev Khu-
danpur. 2010. Recurrent neural network based language model. In Eleventh
Annual Conference of the International Speech Communication Association.
Ruslan Salakhutdinov and Geoffrey Hinton. 2009. Semantic hashing. International
Journal of Approximate Reasoning 50, 7 (2009), 969-978.

Gerard Salton and Christopher Buckley. 1988. Term-weighting approaches in
automatic text retrieval. Information processing & management 24, 5 (1988),
513-523.

Gunnar Schroder, Maik Thiele, and Wolfgang Lehner. 2011. Setting goals and
choosing metrics for recommender system evaluations. In UCERSTI2 Workshop
at the 5th ACM Conference on Recommender Systems, Chicago, USA, Vol. 23. 53.
Dinghan Shen, Qinliang Su, Paidamoyo Chapfuwa, Wenlin Wang, Guoyin Wang,
Ricardo Henao, and Lawrence Carin. 2018. NASH: Toward End-to-End Neural
Architecture for Generative Semantic Hashing. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers).
2041-2050.

Malcolm Slaney, Yury Lifshits, and Junfeng He. 2012. Optimal parameters for
locality-sensitive hashing. Proc. IEEE 100, 9 (2012), 2604-2623.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. 2017.
Wasserstein auto-encoders. arXiv preprint arXiv:1711.01558 (2017).

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information processing systems. 5998-6008.
Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
2008. Extracting and composing robust features with denoising autoencoders.
In Proceedings of the 25th international conference on Machine learning. ACM,
1096-1103.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jiangiu Ji. 2014. Hashing
for similarity search: A survey. arXiv preprint arXiv:1408.2927 (2014).

Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. 2017. A survey on
learning to hash. IEEE transactions on pattern analysis and machine intelligence
(2017).

Qifan Wang, Dan Zhang, and Luo Si. 2013. Semantic hashing using tags and
topic modeling. In Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval. ACM, 213-222.

Yair Weiss, Antonio Torralba, and Rob Fergus. 2009. Spectral hashing. In Advances
in neural information processing systems. 1753-1760.

D Zhang,] Wang, D Cai, and J Lu. 2010. Self-taught hashing for fast similarity
search. In SIGIR’10: Proceeding of the 33rd international ACM SIGIR conference on
Research and development in information retrieval. ACM, 18-25.

Xiang Zhang and Yann LeCun. 2015. Text understanding from scratch. arXiv
preprint arXiv:1502.01710 (2015).

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015. Character-level convolutional
networks for text classification. In Advances in neural information processing
systems. 649-657.

Yuyu Zhang, Hanjun Dai, Chang Xu, Jun Feng, Taifeng Wang, Jiang Bian, Bin
Wang, and Tie-Yan Liu. 2014. Sequential Click Prediction for Sponsored Search
with Recurrent Neural Networks.. In AAAL 1369-1375.

Yizhe Zhang, Dinghan Shen, Guoyin Wang, Zhe Gan, Ricardo Henao, and
Lawrence Carin. 2017. Deconvolutional paragraph representation learning. In
Advances in Neural Information Processing Systems. 4169-4179.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Similarity Search and Hashing
	2.2 Semantic Hashing and Deep Learning

	3 Proposed Model
	3.1 Problem Formulation
	3.2 Binary Autoencoder
	3.3 Denoising Binary Autoencoder
	3.4 Denoising Adversarial Binary Autoencoder

	4 Experimental Results
	4.1 Datasets Used
	4.2 Evaluation Procedure
	4.3 Comparison Methods
	4.4 Results

	5 Conclusion
	Acknowledgments
	References

