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OUTLINE

> Toward practical ML methodology
o What are the challenges?
o What are the goals?

> Practical ML Methods in
o Hashing
o Backdoor Attacks

> Future Directions

> Q&A!
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Research Interests:

> generative-based ML models in various domains, including
retrieval (text, image, graphs), Al security, and advertising.
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Simple-to-use  Reliable

Easier construction Acceptable Performance
Efficient Execution Acceptable Robustness
Simpler Evolution Acceptable Security

Resilience
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Simple-to-use

Easier construction

More involved to build
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Simple-to-use

Easier construction

Efficient Execution /
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Simple-to-use

Easier construction _ . n. to be updated

Efficient Execution

Simpler Evolution : ﬁﬁli
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Reliable

Kaggle Leaderboard Performance Over Time
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& Acceptable Performance
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Precision——

Reliable

ITQ
NASH
ABA-RNN
ABA-CNN

- DABA-RNN
—e— DABA-CNN

Corruption——
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Reliable

Acceptable Performance

@
. o Acceptable Robustness
©
)
° .
° Acceptable Security
Resilience
Adversarial Robustness [Yang et al. 2020]
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Simple-to-use & Reliable

Easier construction Acceptable Performance
Efficient Execution Acceptable Robustness
Simpler Evolution Acceptable Security
Resilience
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Simple-to-use & Reliable

What we usually see

Easier construction Acceptable Performance Complex methods have been developed to
solve various real-world problems given
their superior performance.

Efficient Execution Acceptable Robustness 5

Simpler Evolution Acceptable Security

Resilience
[Source]
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Simple-to-use & Reliable

What we usually see

Easier construction Acceptable Performance Complex methods have been developed to
solve various real-world problems given
their superior performance.

Efficient Execution Acceptable Robustness But simple methods are preferred
because they simpler to use

Simpler Evolution Acceptable Security

Resilience
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Simple-to-use & Reliable What we usually see

Easier construction Acceptable Performance Complex methods have been developed to

solve various real-world problems given
their superior performance.

Efficient Execution Acceptable Robustness But simple methods are preferred
because they simpler to use

Simpler Evolution Acceptable Security Substantial amount of engineering is
Resilience required for better reliability
Stages | original features L VGeome!ry data
brovesing ||| gt e | " || (S
e T
‘ ¥ v B—1 v ¥
‘ Joint features (6950 features)
e (R — (e
3. Model tuning | LightGBM hyperoptimization J LightGBM hyperoptimization

4. Model training |
and prediction |
Formation energy Band gap \

[Source: Kaggle 2018 Competition]
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Complex methods are not simple to use

Click-Through-Rate Prediction Task Challenges:
"I 1. Longer Training Time
2. Require significant amount of data
/ / \\-'\\I Rectified
// Linear Units
. | |

Wide & Deep DNN [Source]
Retrieval Task with Hashing

]
53

0000000

OQeee OO

input

Deep Hashing Network [Zhu et al. 2016]
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Complex methods are not simple to use

Click-Through-Rate Prediction Task

o/ Sigmoid

/i 2 o a9
%;@ R?Ctlfled»
g 7 Linear Units
/ |
[

0000
Wide & Deep DNN [Source]

Retrieval Task with Hashing

Linear Model [Source] Boosting [Source]

Error

Complex engineering is needed to ensure
reliability of simpler models!

(Linear, Data Independent)  (Linear, Data Dependent)

o 9 9
O [ ) ), [ ) ,/
O : //, . ,/,
. 5 .« .«
P convd ,/’/. .0 /’ o ..
Deep Hashing Network [Zhu et al. 2016] 7 e® e
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Bridging the gap between research & practice

research practice - research practice
methodology methodology methodology methodology

How do we make complex methods simpler to use and reliable?

Short training time Fast decision Realistic Assumptions Secured Methodology
99
] o ] [] o
O~ o -O
O1. O
’ [Source]
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When complex model is simpler and reliable

Click-Through-Rate Prediction Task SOTA performance with less engineering!
/ tectifiec

‘ hidden feat, fmpm ! " ) i Wml )I )
Tv iw iw """"" Systematically grow neural networks
—l o o v GrowNet [Badirli et al. 2020]
Wide & Deep DNN [Source] oo oo e
Retrieval Task with Hashing SOTA performance with faster training!
a,rg;nin E. .p,M\ x Hi(f(x)) # [Doan et al. 2022] -3 3
arg min d * s:::
o X Hy(f(x)) + A3 x Hs(f(z))... g (¢llq) E.E. 6L 6.6

f

Retrieval Task with Non-metric Ranking Measures Real-time Ranking on complex ranking measures
(10—

’@’ ademd .@,
Change
representation Q—" 1011 * ;)

aggregator ( aggregator \ | aggregator ]
=) L5 i e A
1000 0010 . [os) qo | | [sER [cis) do (SEP) s _Q“L 1S€P] ‘ﬂ+ﬂ _lsill
1011 ————— ’ — 1 T
compute query 0001,0000  irect . .
ranking from lookup
hamming space
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generalization, robustness...)

RETRIEVA

(retrieval foundation, real-timed,

MACHINE LEARNING

(esp. generative-based solutions,
theoretical generative modeling)

Comptrion

PRACTICAL ALGORITHMS

(high-performing ML approaches
solution, secured ML models)

APPLICATION DOMAINS

Text Mining Graph Analysis

Computational Advertising
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Research Highlights
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Robust Retrieval
Framework

Training-Efficient
Framework

e Novel Divergence-based e Joint energy-based
Quantization Estimation training of hash function

e Low-sample and e Efficient & Effective
computation complexity MCMC Estimation

tasrg

4
oot g3
o 10 _20 30 40 50
Training Epoch

Stealthy Backdoor Attack
Framework

Backdoor Unlearning

Defense Framework

e Realistics Attack’s Threat e Realistics Defense’s
Model & Human Tests Threat Model
e Adaptive Attacks against e Adaptive against Existing

Existing Defenses Attacks

Explainable Retrieval
Framework

e Differentiable Transform
of Structured Objects

e Bijective Graph

Alignments

Y/
e

Efficient Defenses for
Complex Models

Graph2  Graph1

- J

e Backdoor Defenses for
Complex Models

e Adversarial Robustness
for Complex Models
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Research Highlights

22

Training-Efficient
Framework

e Novel Divergence-based
Quantization Estimation

e Low-sample and
computation complexity

o8] — swp--{08

oot g3
o 10 _20 30 40 50
Training Epoch

Stealthy Backdoor Attack
Framework

e Constrained optimization
via adversarial game

e Adaptive against Human
and Machine Defenses

e Joint energy-based

Robust Retrieval
Framework

training of hash function

e Efficient & Effective

MCMC Estimation

tasrg

Backdoor Unlearning

Defense Framework

Explainable Retrieval
Framework

e Differentiable Transform
of Structured Objects

e Bijective Graph
Alignments

Y.
ek

Efficient Defenses for

Graph2  Graph1

J

&

e Constrained optimization

via adversarial game

e Adaptive against Existing

Attacks

“
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e Backdoor Defenses for
Complex Models

e Adversarial Robustness
for Complex Models
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Faster Hash-Function Training

23

> Develop a new training framework:

o one quantization loss (vs. >3)
o better retrieval performance
o significantly faster training

Causative

Exploratory Attacks

Attacks Model

g L Machinel Learning b
input Lata Al P Prediction
Algonthm

> Develop an optimization framework
o adversarial game between attacker and

model trainer
o realistic threat model

m invisible to human’s inspection
m invisible and adaptive to machine’s

inspection
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Retrieval & Similarity Search

Problem: Given a dataset of
Nitems X = {x1, z9,..., 2N}
and a queryq, we aim to find

[ items R = {ml, LYy oo CIJl}
such that, for a similarity
function sim, we have:
sim(q, z;) > sim(q, ;)
Va; € R, \Vle < X\R

A find similar
query images

search results

large image database
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Linear Search

Exhaustive search

> infeasible in large database of
1 millions or billions of items.
> wasteful of computation
o only asmall subset is relevant

2 . ... .
o real-time ranking is impossible
N
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Approximate nearest neighbor

auery Approximate Search

>  ANN search builds an index
1 structure
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Approximate nearest neighbor

auery Approximate Search

> ANN search builds an index
1 structure
limits the search to a subset
of candidate items
(sub-linear)
> How to construct the index?
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Approximate nearest neighbor

query Approximate Search (Hashing)

> Transforms images into binary
1 vectors

> Search via table look-up

AR

N

|

a2\
> Linear Search in Discrete space:
1010101 e Memory efficient: 4MB for 1M items

:8:8:8:8:8 e Compute efficient: 2 instructions per
0l1010I10I0 1010101010 ! - distance computation

1010101010 m
converted ————
online
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Hash-function learning

> Learn a hash function

discrete function ontinuous relaxation

F:R"— {0, 1}™ »(f:R"%[O,I]m

F(z) = f(x) > 0.5

discretization

> Qverall objective function of hashing methods

argminlE, .p L(z, f(z))H+ Ez~p, D1 Ai X

locality-preserving loss
preserves the semantics
of sim in discrete space

29 Khoa D. Doan | Virginia Tech | Baidu Research

H(f(z))

hashing regularizer
minimizes gap between
continuous and discrete
optimizations.
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Hashing Loss Examples

_ Dissimilar point ~® Similar/Dissimilar: same

Locality Preserving Loss  (z, 2z ,z") class/different class
T \ e Similar/Dissimilar: nearest
curren point similar point ~ neighbor/distant neighbor

2, max(0, 1+ [f(z) — f(27)], — [f(z) — f(z7)l,)

Quantization Loss (Regularization)

Bit Balance Bit Uncorrelation Low Quantization Error
1011 1011 0.9/0.2 ...
0111 0111 0.10.3 ...
Tm11 1111 0.2|0.1 ...
50% being 0 or 1 \V
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Hashing Loss Examples

_ Dissimilar point ~® Similar/Dissimilar: same

Locality Preserving Loss  (z, 2z ,z") class/different class
T \ e Similar/Dissimilar: nearest
curren point similar point ~ neighbor/distant neighbor

2, max(0, 1+ [f(z) — f(27)], — [f(z) — f(z7)l,)

Quantization Loss (Regularization) averaged bit's maximum entropy

Bit Balance: ", by logby + (1 — by)log(1 — by), by = E, {f(w)[k]]

orthogonal projection

Bit Uncorrelation: ‘WTW — I‘z

bit's minimum entropy

Low Quantization Error: > > 7" — f(z)log(f(z)) — (1 — f(z))log(1 — f(z))

31 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022



http://khoadoan.me

Quantization Regularization helps efficiency

min ), max(0, 1+ |f(z) — f(z7)[, — [f(2) = f(z7)l,)
WTW — 1|, + S, b logh + (1~ bi)log(1 — i), by = E. | f(x) ]
+ 225 Doper —F(2)log(f(z)) — (1 = f())log(1 — f(z))

Complex objective increases training complexity

i ; Hyperparameter Tunin
(i.e., hyperparameter tuning) SYPEID g (A]

[Source]
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Quantization Regularization helps efficiency

miny », max(0, 1+ |f(z) — f(z")], — |f(z) — f(=z7)]5)
|WTW — I‘z -+ Z;;nzl bk logbk -+ (1 — bk)lOg(l — Bk), Ek = F, [f(x)[k]]
+2 0, 21 —f(2)log(f(z)) — (1 — f(2))log(1 — f(z))

existing optimization
Complex objective increases training complexity
(i.e., hyperparameter tuning)

N 005
w
0.841 H0.5

Complex objective results in sub-optimal quantization

mAP

0.821 NN s
03°
C\:’;v&;?p\x%c Q\A;:o\"?p :é ;OY\C ' CSQ  HashNet  DBDH
AN K
(a) Quantization Error (b) Bit Entropy
[Doan et al. 2022]
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Quantization Regularization helps efficiency

mins Y max(0, 1 + |f(z) — f(zT)], — |f(x) — f(z7)|y)
|WTW - I‘z + > hey b logby, + (1 - bk)log(l - Bk)’ b, = E; [f(x)[k]]
+ 20 21 —f(@)log(f(z)) — (1 — f(z))log(1 — f(z))

-

0.841 lo.56
.@

§ =

0.82 S
03°

0 S RGP 2 a2 RC (C WO .
c\}\ @0% 2 \AOQ’OY\C% @O%QY\ CSQ  HashNet  DBDH

AT Y,

Complex objective increases training complexity
(i.e., hyperparameter tuning)

mAP
Bit Entropy

Complex objective results in sub-optimal quantization

(a) Quantization Error (b) Bit Entropy
[Doan et al. 2022]
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Single-shot Quantization

Previous approaches: Our approach: single divergence loss
o b * ~Y
argmin F;..p > . A x Hp(f(z)) arg mind(q|| ¢*) fEa:) q
f g’ :fixed distribution
Advantages: easier optimization . Advantages: single-shot optimization
Disadvantages: more hyperparameter tuning Disadvantages: challenging to optimize
Task: learn 2-bit hash function
‘ F 1.0 *: b; ~ bernoulli(0.5
® ® . 0 e q* : b (0.5)
& & 0.0 0.0
& 00 01 10 11 00 01 10 11
learned distribution ¢ optimal distribution ¢*

(with maximum entropy)

05/05/2022
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Single-shot Quantization

Previous approaches:

argmin B, .p_ > . A x Hp(f(z))

Advantages: easier optimization
Disadvantages: more hyperparameter tuning

Our approach: single divergence loss
argmind(q||¢*) f(&) ~4q
f q" : fixed distribution

Advantages: single-shot optimization
Disadvantages: challenging to optimize

ol
- 1
°l

1

0 2

Original HashNet HashNet/Single-Loss

Fig. Learn 2-bit hash function on CIFAR10’s data from 4 classes

36 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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Single-shot Quantization

Previous approaches: Our approach: single divergence loss
. : * €T) ~
argmin E,.p_ >, A\ X Hi(f(x)) argmind(q || q*) ff ) ~4q
f q  :fixed distribution
Advantages: easier optimization _ Advantages: single-shot optimization
Disadvantages: more hyperparameter tuning Disadvantages: challenging to optimize

T R 20 o T
. ." v °

10

A
e ®
- —

0 —8 o

-10 |

20 4%

]
[ r, '
e I
°l I
1 1

0 2 -20 0 20 -2 0 2

Original HashNet HashNet/Single-Loss Original CSQ CSQ/Single-Loss
Fig. Learn 2-bit hash function on CIFAR10’s data from 4 classes

37 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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Choosing the “right” divergence
Objective: D(q(b)|| ¢*(2))

Wasserstein Distance
- Non-trivial to estimate

yEI(p,v)

1/2
- High sample complexity D(u,v) = ( inf / p(z,0)||z — b||2d2db>
(dual domain) (2,b)~y B

- Possibly minimax optimization

Sliced Wasserstein Distance |O(LNlog(Nd))

- Lower sample complexity

. 1/2
- No minimax D(h(X),B) ~ (% ZW([wfh(Xj,[w?B}))
=1 NI

- Several directions are discriminative

Hash-Sliced Wasserstein Distance O(mN log (N d)) m < L
- Lower sample complexity
No minimax

projection into 1-D space

1/2
) 2
- Small number of discriminative projections (h(X ( Z[W l ’Bl")] )

Other divergences (e.g. KL, JSD, etc...)
- Do not work for distributions with non-overlapping supports
- High sample complexity

- Minimax optimization

38 Khoa D. Doan | Virginia Tech | Baidu Research

no projection: averaging along
each hashing dimension

05/05/2022
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Performance Evaluation (Precision@1000)

Retrieve kitems Il Precision@k = number of wm / k Blue: improvement over original methods

-S: Sliced Wasserstein Estimate | -C: Proposed Wasserstein Estimate

}
CIFAR-10
Mehiod 16 bits 37 bits

DSDH 0.8252 0.8406—
DSDH-S 0.8526/3.3% 0.8543/1.6%
DSDH-C—0:8645/4.8%  0.8739/4.0%

Single-Label Data

39 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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Performance Evaluation (Precision@1000)

Retrieve kitems Il Precision@k = number of mm /k
-S: Sliced Wasserstein Estimate | -C: Proposed Wasserstein Estimate

Khoa D. Doan | Virginia Tech | Baidu Research

o CIFAR-10 NUS-WIDE
SIS 16 bits 32 bits 16 bits 32 bits
DSDH 0.8252 0.8406 0.8117 0.8294
DSDH-S 0.8526/3.3% 0.8543/1.6% |0.8162/0.6% 0.8312/0.2%
DSDH-C 0.8645/4.8% 0.8739/4.0% |0.8195/1.0% 0.8391/1.2%
S TCE IO E | Multi-Label Data
40

Blue: improvement over original methods

05/05/2022
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Performance Evaluation (Precision@1000)
Retrieve kitems Il Precision@k = number of mm /k
-S: Sliced Wasserstein Estimate | -C: Proposed Wasserstein Estimate

41

Wil __ CIFAR-10 __ NUS-WIDE
16 bits 32 bits 16 bits 32 bits
DSDH 0.8252 0.8406 0.8117 0.8294
DSDH-S 0.8526/3.3% 0.8543/1.6% |0.8162/0.6% 0.8312/0.2%
DSDH-C 0.8645/4.8% 0.8739/4.0% |0.8195/1.0% 0.8391/1.2%
HashNet 0.6193 0.8613 0.7581 0.8158
HashNet-S  |0.8470/36.8% 0.8755/1.7% |0.7743/2.1% 0.8199/0.5%
HashNet-C ~ |0.7698/24.3% 0.8715/1.2% |0.7456/-1.7% 0.8078/-1.0%
GreedyHash |0.8561 0.8616 0.7601 0.8009
GreedyHash-S |0.8583/0.3% 0.8656/0.5% |0.7657/0.7% 0.7973/-0.5%
GreedyHash-C [0.8517/-0.5% 0.8700/1.0% |0.7630/0.4% 0.7931/-1.0%
DCH 0.8621 0.8568 0.7843 0.7898
DCH-S 0.8622/0.0% 0.8761/2.3% |0.7846/0.0% 0.7923/0.3%
DCH-C 0.8654/0.4% 0.8635/0.8% |0.7893/0.6% 0.7914/0.2%
CSQ 0.8510 0.8571 0.7903 0.8285
CSQ-S 0.8661/1.8% 0.8732/1.9% |0.8034/1.7% 0.8318/0.4%
CsQ-C 0.8670/1.9% 0.8688/1.4% |0.8007/1.3% 0.8353/0.8%
DBDH 0.8440 0.8421 0.8122 0.8323
DBDH-S 0.8626/2.2% 0.8675/3.0% |0.8177/0.7% 0.8388/0.8%
DBDH-C 0.8658/2.6% 0.8731/3.7% |0.8135/0.1% 0.8380/0.7%
ST CR LI ETEN| Multi-Label Data

Khoa D. Doan | Virginia Tech | Baidu Research

Blue: improvement over original methods

05/05/2022
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Performance Evaluation (MAP@5000)

Retrieve kitems JIIJIIIll MAP@k = Mean of Average Precisions from 1 to k (Area under PR Curve)

-S: Sliced Wasserstein Estimate | -C: Proposed Wasserstein Estimate

42

Method ' CIEAR—IO . ' NUS—WIDE . ' C.OCO .

16 bits 32 bits 64 bits 16 bits 32 bits 64 bits 16 bits 32 bits 64 bits
DSDH [40] 0.7909 0.8072 0.8278 0.8270 0.8455 0.8640 0.7331 0.7853 0.8074
DSDH-S 0.8187/3.5% 0.8439/4.6% 0.8517/2.9% |0.8282/0.1% 0.8461/0.1% 0.8712/0.8% | 0.7330/0.0% 0.8030/2.3% 0.8404/4.1%
DSDH-C 0.8531/7.9% 0.8620/6.8% 0.8658/4.6% |0.8433/2.0% 0.8631/2.1% 0.8749/1.3% |0.7424/1.3% 0.8032/2.3% 0.8408/4.1%
HashNet [6] 0.6922 0.8311 0.8566 0.7728 0.8336 0.8654 0.6899 0.7666 0.8098
HashNet-S 0.8131/17% 0.8573/3.2% 0.8749/2.1% | 0.8062/4.3% 0.8438/1.2% 0.8713/0.7% | 0.7215/4.6% 0.7764/1.3% 0.8189/1.1%
HashNet-C 0.7939/14% 0.8467/1.9% 0.8691/1.5% | 0.8002/3.5% 0.8437/1.2% 0.8791/1.6% | 0.7202/4.4% 0.7789/1.6% 0.8202/1.3%
GreedyHash [50] | 0.8223 0.8474 0.8646 0.7802 0.8081 0.8328 0.6533 0.7219 0.7561
GreedyHash-S 0.8280/0.7% 0.8497/0.3% 0.8653/0.1% | 0.7815/0.1% 0.8083/0.0% 0.8390/0.7% | 0.6668/2.1% 0.7291/1.0% 0.7618/0.8%
GreedyHash-C | 0.8375/1.9% 0.8536/0.7% 0.8722/0.9% | 0.7890/1.1% 0.8179/1.2% 0.8477/1.8% | 0.6637/1.6% 0.7299/1.1% 0.7712/2.0%
DCH [5] 0.8302 0.8432 0.8558 0.8015 0.8061 0.8040 0.7578 0.7792 0.7723
DCH-S 0.8372/0.8% 0.8515/1.0% 0.8602/0.5% | 0.8058/0.5% 0.8079/0.2% 0.8067/0.3% |0.7657/1.1% 0.7831/0.5% 0.7803/1.0%
DCH-C 0.8446/1.7% 0.8596/1.9% 0.8711/1.8% |0.8159/1.8% 0.8145/1.0% 0.8155/1.4% |0.7702/1.6% 0.7892/1.3% 0.7807/1.1%
CSQ [5%] 0.8069 0.8291 0.8366 0.7992 0.8384 0.8596 0.6783 0.7550 0.8146
CSQ-S 0.8401/4.1% 0.8555/3.2% 0.8554/2.3% | 0.8044/0.7% 0.8495/1.3% 0.8626/0.4% | 0.7036/3.7% 0.7765/2.8% 0.8234/1.0%
CSQ-C 0.8457/4.8% 0.8558/3.2% 0.8652/3.4% | 0.8054/0.8% 0.8511/1.5% 0.8701/1.2% | 0.6989/3.0% 0.7752/2.7% 0.8255/1.3%
DBDH [60] 0.7660 0.8223 0.8492 0.8305 0.8552 0.8666 0.7202 0.7826 0.8042
DBDH-S 0.8458/10% 0.8587/4.4% 0.8603/1.3% | 0.8387/1.0% 0.8577/0.3% 0.8680/1.8% | 0.7461/2.2% 0.7996/3.7% 0.8336/4.3%
DBDH-C 0.8466/10% 0.8593/4.5% 0.8668/2.1% | 0.8395/1.1% 0.8633/0.9% 0.8760/1.1% | 0.7389/2.6% 0.7889/0.8% 0.8308/3.9%

Single-Label Data | Multi-Label Data
Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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Qualitative Analysis

The t-SNE visualizations of the quantized 16-bit hash codes

APl ©4 9 6 The learned hash codes are:
S . 2 o B " e Better separation between class
£0 4 25 K * 0 " Ty e Better closeness within a class
“ 8 g = g
. $ v/
(a) CSQ (b) CSQ-S (c) CSQ-C

Averaged running time per epoch across different
supervised hashing methods (in seconds).

Dataset | Original | SWD | HSWD More computationally efficient even
CIFAR-10 19.4 242 | 17.1/40% before intensive model selection
NUS-WIDE | 58.3 71.2 | 50.1/41%
COCO 55.6 68.1 | 49.5/37%

43 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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Faster Hash-Function Training  Artificial Intelligence Security

Causative
Exploratory Attacks
Attacks —
Q&-ﬁ"*’g_
s, i
> Develop a new training framework: > Develop an optimization framework
o one quantization loss (vs. >3) o adversarial game between attacker and
o better quantized hash functions model trainer
o better retrieval performance o realistic threat model
o significantly faster training m invisible to human’s inspection
m invisible and adaptive to machine’s
inspection
44 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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Single-Loss Hashing Algorithms  Adaptive Backdoor Attacks

> Develop a new training framework:

(@)

(@)
(@)
(@)

45

one quantization loss (vs. >3)
better quantized hash functions
better retrieval performance
significantly faster training

T Causative
N l’l
e Attacks
Model
&
omsenen
] [SSSN iy I’l
8 w
Input Data "“':,':::x;"'"g Prediction

> Develop an optimization framework
o adversarial game between attacker and
model trainer
o realistic threat model
m invisible to human’s inspection
m invisible and adaptive to machine’s
inspection

Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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ML Models in Practice
The increasing complexity of @@@

Machine Learning Models and
Training Processes has promoted

training outsourcing and Machine Training Data

Learning as a Service (MLaaS). .

This creates a paramount 5- Wi D e

security concern in the model Training the ’ ( )

building supply chain. Mac::ne Fteharning MLaa$ IBM Cloud
gorithm

Providers

Input Data Tralned Model Prediction

46 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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Backdoor Attacks

@%

=|= Backdoor Attack
== influences the
Training Data model prediction
by modifying the
‘ model’s behavior
during the
training process
Training the with a backdoor.
Machine Learning
\ Algorithm )
trigger
— : IZ> "‘..ﬁ‘l\ '
Input Data Trained Prediction

Model

47

Prediction: SLOW Prediction: FAST

Backdoor attacks can lead harmful
consequences when the ML models

are deployed inreal life.

Khoa D. Doan | Virginia Tech | Baidu Research

05/05/2022
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48

BACKDOOR ATTACKS ADVERSARIAL ATTACKS
(Causative) (Exploratory)

With trigger

Withsmall_ %@
perturbation

- Modifies training samples or - Directly modifies the testing samples

training process intelligently
- Requires owning the training data
or training process

@ Training Sample (Triggered) Training Sample (Class A) Training Sample (Class B)

® Test Sample (Class A)
Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022


http://khoadoan.me

How is the backdoor injected?

Consider a classificationtask  fg : X — C

(1) Generate triggered data

@@@ T, X - X »@@@

n:C—C

Training Data Training Data with Trigger

S=A{(zi,y):1=1,..,N} S ={(T(x:),n(y:)) :i=1,..,

where M < N

(2) Poison the model (under empirical risk minimization)

rnein E(a:i,yi)GSUS’ [r(fe(wz; yz))

49 Khoa D. Doan | Virginia Tech | Baidu Research
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The “fixed” trigger/transformation function

The unrealistic assumptions in fixed transformation functions
e Poisoned samples are not visually inspected by human defenders

Original Patched Blended ReFool WaNet

V0O ®e®

50 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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The “fixed" trigger/transformation function

The unrealistic assumptions in fixed transformation functions
e Poisoned samples are not visually inspected by human defenders
e Backdoor attacks are not adaptive to new defenses

Penultimate .
Layer . ~

A\

= S = Vt sl . . '.
\@ ' " V.g . .. ..o. ..‘ .
/,’t ’ . 3 . - e . i %
Y T N S~ ﬁfkdoor
- ...
w? \‘ q_

QOO0
Q0000
00000

Benign Model All-to-One All-to-All
Observed in all existing methods when looking at the latent space [Chen et al. 2018]

51 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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The “fixed” trigger/transformation function

The unrealistic assumptions in fixed transformation functions
e Poisoned samples are not visually inspected by human defenders
e Backdoor attacks are not adaptive to new defenses

Penultimate
Representation Level
Layer e 111 —— .
| e [Tran et al. 2018] Inspecting the
- O o, - correlation of clean and
XN Q Q E . poisoned samples to top Eigen
0\ \} N N\ _ o
OO OB 5. Vectors can successfully detect:
Vg Q* o) 's E e poisoned classifier
O OO = e poisoned samples
00 20 40 60 80 100 120 140
Poisoned Classifier Correlation with Top Eig
52 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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The “fixed" trigger/transformation function

The unrealistic assumptions in fixed transformation functions
e Poisoned samples are not visually inspected by human defenders
e Backdoor attacks are not adaptive to new defenses

What really happening:

Simple Attacks Complex Attacks

@ e not realistic

53 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
P

e heuristically engineered
e not adaptable
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Stealthy & adaptive attack via adversarial game

> Solve the constrained optimization problem

learn to generate the trigger

This framework allows:

1. The adversary to adapt to how the classifier

Dgg_\&-zl: learns and the existing defenses

\_/ 2. Theclassifier learns to preserve clean-data
learn to train the classifier performance while being poisoned




Stealthy & adaptive attack via adversarial game

> Solve the constrained optimization problem

learn to generate the trigger N clean data objective triggered data objective
argemin Haﬁ(fe(wi); yi)] +[5£ (fe (72-(0) (mz)) ) 77(.%))]
) 1=1
& .
~_ s.t. (1)€ = argmin Y L(fo(Te(=:)),n(y:))
learn to train the classifier £ 1=1

> To ensure stealthiness, the trigger function is constrained as

Te(z) =  + ge(z), [lge(@)]|, <€




Algorithm 1 LIRA Backdoor Attack Algorithm

The Learning Algorithm T

(2) number of iterations for training the classifier k
(3) number of trials m
(4) number of fine-tuning iterations n

Stage I: update both T and f Stage II: only update f 5) leam?ng rate to tra.in the classifier T .
(6) learning rate to train the transformation function v
/’ (7) batch size b
e - (8) LIRA parameters « and 3
“ Output:

/ ’A\ ; l (1) learned parameters of transformation function £*
/ f - (2) learned parameters of poisoned classifier 6*

[ : Initialize 0 and €.
: // Stage I: Update both f and T'.
€ &1+ 0
: repeat
j<0
repeat

Sample minibatch (z,y) from S

0 « 05 — Vi (aL(fo: (2),y)+

BL(fa: (Te(x)), n(v))
9: € &= VeL(f3(Te(2)),n(y))
10: 031 < 0; —’vae;' (aﬁ(fgz(z),y)—i—

——— parameter transfer — parameter update path ——— input TRAINING BL(fo: (Te(x)),n(y)))
11: je—j+1 ’
12: until j =k

The Learning process is separated in 2 stages. 5 febicitl

14: until i = m

e Stage |: both f and T are trained (trigger generation). T Sia Fissdasig
e Stage Il: only fis trained while T is fixed (backdoor injection). |5 "%

18: Sample minibatch (z, y) from .S
19: Oiy1 < 0; — ’valh (aﬁ(.ﬂl (.’E),y) &
ﬁ‘c(fei (Tf(a"))v n(y)))

20: t—i+1
21: until¢i =n

% ¥ O B B




Original

Patched

Blended

ReFool

Images Patched = Blended A ReFool = WaNet OURS
Backdoor 8.7 1.4 2.3 38.6 60.8
Clean 6.1 10.1 13.1 174 | 40.0
Both 7.4 3:7 1.7 28.0 | 504

57

Human Inspection Tests - Each tester is trained to

recognize the triggered image. Success Fooling Rate (unable

to recognize the clean or poisoned images) is reported
Khoa D. Doan | Virginia Tech | Baidu Research

WaNet

a8ew

|enpisay

200x
Amplified
Residual

Normalized
_Residual

Maximally confuse the testers.

05/05/2022
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Attack Performance

58

Clean Attack Clean Attack
MNIST 099 0.99 0.99
CIFAR10 094 099 094
GTSRB 099 0.98 0.99

Tinylmagenet 0.57 0.99 0.57

All-to-One Attack n(y) = 0Vy

Dataset WaNet OURS

Clean Attack Clean Attack

MNIST 0.99 095 0.99
CIFAR10 094 093 0.94
GTSRB 0.99 098 0.99

Tinylmagenet 0.58 0.58 0.58

All-to-All Attack n(y) = (y + 1)%|C|

Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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But some defenses are tough

Activations of the last hidden layer (penultimate) with 2-dimensional t-SNE projections. There
exists a clear separation between the poisoned and clean data of a predicted class. Activation
Clustering detects such separations and removes poisoned data, then re-trains the model.

Penultimate .
Q Q O\ o) _® A o . C-lean"-."
Q O O\\\ ‘ ...' . s ::. ::*.. )...‘.‘ e <. %‘! J'::. )
O OIOPO | w W2 e o
o oo . o ol
on? » " \l ~

Benign Model All-to-One All-to-All

We observe such separations in the existing methods, including Badnets [Gu et al 2017] & WaNet [Nguyen et al 2021]

[Chen et al, 2018]




Bypassing latent-space defense

> Solve the constrained optimization problem:

N clean data objective triggered data objective

arg;ninzZO[ﬁ fo(x;) yz] ﬂk‘(fo(ﬁ-(e)(wi))m(yi))]

learn to generate the trigger
defensive
mechanism 7

high attack minimize the difference

|earn to train the classifier performance in the latent space

st (¢ = argmin S{CGTe@), 1)) [+ RolFer 7o)

1=1

> The trigger function can be defined as:
Te(z) = = + ge(@), [|g¢(@)]4, <




Discriminative Sliced Wasserstein Distance (DSWD)

»uf,  Wasserstein Distance: O(N?°log(N)) 1/2
@lean «* ‘
. Ré(u,v) = | inf / p(z, 2)||z — 2||odzd>
r’:,.f_‘ .‘f’;‘. s-. V€ (p,v) (z,2)~y

‘-{{_#fé'iqoor Sliced Wasserstein Distance: O(LN Iog(N)) ra“jomd'red'on

o Y 1/2
. 0, el
Ro(Fe, Fp) =~ ( 7 Z W(F2, F, )

Discriminative Sliced Wasserstein Distance: O(|C| N log(N))

1/2
c| /

Ro(Fe, Fo) ~ <|c| Z ]'-WC‘&U}—ZVC“)f

fixed, maximally-separated
directions




DSWD: Valid Distance Measure with Better Efficiency

Theorem 1: When the latent space is the penultimate layer of a neural
network, the proposed DSWD distance is a valid distance function of
probability measures in this space.

o CIFAR10 MNIST
¥ 500 ‘ g
yos X 9 400
G G
n 1t 300
0 0.2 é+*++ 'é’ é.é..é.*..‘_
200
¢
.1 100
0.01k 0.1k 0.5k 1k 5k 10k DSWD 0.01k 0.1k 0.5k 1k 5k 10k DSWD
(a) Pre-activation Resnet-18 Model (b) CNN Model

Figure 1: Distance estimates in the latent space for SWD with different
number of sampled directions (between 10 to 10,000) and DSWD.




Stealthy Latent Space of Pmsone{d Model\s
. G-Iean it .

*ﬁéa'

ée;ckdoor
(a) All-to-one: Others \_(b) All-to-one: OURS Ac) All-to-all: Others \_(d) All-to-all: Ours _/
Figure 2: MNIST: t-SNE embedding in the latent space.

\ . .-";,.,;.;-."

S
Clean
.

e T
"u"..’élé:-;.éﬁg.oor

2 " I N '

(a) All-to-one: Others \ (b) All-to-one: Ours /(c) All-to-all: Others \@All-to-all: Ours /
Figure 3: CIFAR10: t-SNE embedding in the latent space.

63 Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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By Passing Spectral Signature

64

wn
2300
£
E 250
192
%5 200

Representation Level

Plot of correlations for 5000 training examples correctly labeled and
500 poisoned examples incorrectly labeled. The values for the clean
inputs are in blue, and those for the poisoned inputs are in green. The
correlations with the top singular vector of the covariance matrix of
examples in the latent space show a clear separation between clean

Number of Images

|
1l L il I 0l s g
0 20 40 60 80 100 120 140

and poisoned data. In WB, we don’t have this separation (below). Correlation with Top Eig
MNIST CIFAR10 GTSRB Tinylmagenet

400

350 mm clean mm clean . clean 300 mm clean
mmm backdoor ) 400 === backdoor @ s backdoor @ === backdoor
E_ Tgl 300 781250
§ 299 5 $ 200
5} ‘G ‘G 200 G igh
= =500 = =
100
2 100 II || 2 100 I‘ | I = 100 2 B
|l l L. 5
. I|l . ] ||| 0
-40 —20 =20 -10 20 =10 =5
Correlatlon W|th Top R|ght Smgular Vector Correlation with Top Right Slngular Vector Correlation with Top nght Smgular Vector Correlation with Top nght Smgu!ar Vector
(a) (b) (©) (d)

Figure 4: Defense experiments against Spectral Signature with all-to-one attack. The correlations of
the clean and backdoor samples with the top singular vector of the covariance matrix in the latent

space are not separable. Khoa D. Doan | Virginia Tech | Baidu Research 05/05/2022
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Future Directions

65

i
v _
)l
* e - _
*

Training-Efficient
Framework

Robust Retrieval
Framework

Explainable Retrieval
Framework

Stealthy Backdoor Attack
Framework

Backdoor Unlearning
Defense Framework

Efficient Defenses for
Complex Models

Efficient Divergence
Estimation

Robust Energy-based
Generative Hashing

=

=

=

[ Real-time Ranking

| with Complex Models |

f Retrieval in ML
| (Model Training) |

s

J

Retrieval in
| ChemlInformatic |

Stealthy Attacks in
| Structured Data )

[Energy-based Training for|

Secured Models

L J
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Real-time Ranking with Complex Ranking Functions

When ranking function is a complex measure
(e.g. Neural-Network based Recommender Systems or Ranking Models)

e Existing vector-based fast ANNs (e.g. FAISS) are not suitable.
e Existing graph-based ANNs (e.g. Tan et al. 2020) are computationally expensive.

arg max f (x5 q). Graph-based Approach Hash-based Approach
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Change
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(a) MLP-Concat (b) MLP-Em-Sum Fast Ranking with Graph: Fast Ranking with Hashing: generate
traverse the nearest-neighbor hash codes for direct lookup (no distance
graph using neural function. computation using the neural function)
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Better Approaches for Billion-scale Search
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Hashing for ML Model Training
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Secured Energy-based Model Training
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Security Risks of Real-world Settings

So far, most security
studies are conducted in
controlled environments.

Can we search for
real-world scenarios
when the learned models
fail and assess their

The increasing demand for ML Models in probability of failure?
real-world applications (e.g. autonomous

agents) raises a question about their

potential security risks
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THANK YOU!
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Website: https://khoadoan.me
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